Current Use of Regenerative Therapies in Sport Horse Injuries

Indiana Association of Equine Practitioners November 2012

Current Use of Regenerative Therapies in Sport Horse Injuries

Duncan Peters DVM, MS Equine Lameness and Sports Medicine Michigan State University-CVM East Lansing, Michigan

Introduction

- Injuries that are amenable to biologic regenerative therapy
- Regenerative therapies
- Clinical use and results

Introduction

- "Hot topic" for injury repair (Prades 2007, Brehm 2008, Fortier 2009, Frisbee 2009)
- Clients are asking about and for it
- Harness the body's own reparative mechanisms
- No foreign substance
- More "functional" healing
- Formation of NAVRMA with meetings Feb 2010, Jun 2011 and Nov 2012www.navrma.org

Sport Horse Injuries- Joints

Acute-

Sprain, synovitis, cartilage damage, subchondral bone trauma, "bad step"

- Chronic-
 - Due to repetitive mature of activity on joint
 - Instability of joint- conformation, soft tissue support
 - Cartilage wear- degeneration and cellular byproducts
 - Osteoarthritis- chronic synovitis
- Developmental-
 - Osteochondral fragments or bone cysts-fetlock, hock, stifle, pastern

Sport Horse Injuries- Ligaments

- Acute desmitis-
 - Overload injury due to altered mechanical overload or lack of "conditioned" tissue for load

 - Footing, weight of animal, shoeing
 Location- body SL, branch SL, DSL, ALDDFT
- Chronic desmopathy-

 - Repetitive stress with progressive weakening, damage, poor attempted repair, swelling, thickening, fibrosis
 Possible lack of recognition of problem, not particularly painful or limiting in early stages, conformation
 - Many at bone/ligament attachment- PSL, sesamoids

Sport Horse Injuries- Tendon

- Acute tendinitis-
 - Trauma, overload
 - Margin vs. core vs. tears- SDFT, DDFT (low)
 - Apineurosis of muscle to tendon
- Chronic tendinopathy-
 - Recurrent injury at juncture of previously damaged region- proximal or distal

Regenerative Therapies

- Bone marrow aspirate (BMA)
- Platelet rich plasma (PRP)
- Interleukin-1 receptor antagonist protein (IRAP)
- Stem cellsmesenchymal or embryonic (SC)

Regenerative Therapy- General Aspects

- Centered on use of biologics from natural sources
- Autologous- Enhancing already present healing mechanisms
- Allogeneic- "Off the shelf" source, prepared and stored
- Embryonic source- universal aspect
- Provide growth factors- Regulate cellular metabolism
- Provide cellular matrix or scaffolding
- Provide multipotent or pluripotent cells that may differentiate

Regenerative Therapy- Growth Factors

- Protein signaling molecules that regulate cellular metabolism- either positively or negatively
- Enhance tissue healing- stimulate cell proliferation, increase extracellular matrix synthesis, promote vascularization
- Down or Up regulate catabolic cytokines-interleukins and matrix metalloproteinases
- Available as recombinant, purified protein or within a "slurry"- platelet rich plasma, bone marrow aspirate

Growth factors

- Platelet derived growth factors (PDGF)
- Bone morphogenetic protein-2 (BMP-2)
- Insulin-like growth factor-I
- (IGF-I) Transforming growth factor-B (TGF-B)
- Vascular endothelial growth factor (VEGF)
- Growth/differentiation factor
- (GDF) Basic fibroblast growth factor (BFGF)

Evidence for Growth Factor Efficacy

- In vitro and animal studies (Waselau 2008, Schnabel 2008, Sampson 2008, McCarrel 2009)
- In vivo rat model- increase breaking strength of Achilles tendon (Smith 2006)
- Tendon and ligament results suggest tissue response differs with sites (Schnabel 2007)
- Enhanced cartilage/osteochondral repair (Mishra 2009)
- Little long term, multicentered human or equine data available

Bone Marrow Aspirate

- Slurry of cells, growth factors
- Proteins from bone marrow stroma
- Hematopoietic stem cells
- Undifferentiated multipotent cellsmesenchymal stem cells
- Potential of cells to differentiatevariable/unknown
- Often combined with PRP (Herthel 2001)
- Used in tendon, ligament, bone lesions (Smith 2003/2006, Crovace 2007, Schnabel 2008)

Bone Marrow Aspirate

- Obtained from the sternum or tuber coxae
- Standing or under general anesthesia
- Sterile preparation
- Heparinized syringe
- Separated in close optic base systems
 - Magellan Technology

Platelet Rich Plasma

- Obtained from blood- autologous, (ACS)
- Concentration of platelets and some leukocytes- centrifugation, filtration
- High growth factor concentration
- Forms scaffold within tissues upon injection
- Relatively low cost
- Use in soft tissues- intralesional, wounds (Prades 2007, Schnabel 2007/2008, Smith 2006)
- Use intraarticular (Sanchez 2008, Abellanet 2009, Saite 2009)

Platelet Rich Plasma

- Obtained from anticoagulated blood
- Desired concentration of
- platelets is 4-5 times circulatory levels Obtained by
- centrifugation or differential filtration
 - Remove red blood cells RBC

 - Remove platelet poor plasma PPP

PRP- Factors to Consider

- Four fold (4X) increase of platelet concentration over plasma concentration gives maximal stimulation of healing- greater numbers not better
- Leukocyte concentration affects inflammation and delays positive response
- Freezing lysis leukocytes
- Evidence that NSAIDs may diminish benefits of PRP
- Few "flares"/reactions- more during early inflammatory phase of lesion (1-10 days)
- Can use subsequent treatments (soft tissue or IA) or with BMA

Interleukin-1 Receptor Antagonist Protein (IRAP)

- First characterized 1984 to block inflammatory cascade
- Treatment for synovitis, osteoarthritis, rheumatoid arthritis in humans (Orthogen, Germany)
- Both symptom and disease modifying effects (Frisbee 2007)
- Basic science describes preferential upregulation of "good" cytokines (Meijer2003)
- Patented system in equines- Arthrex or Arthrex II
- Utilized primarily in synovial spacesjoints, sheaths, bursas

IRAP

- Preparation
- Draw blood into a syringe with etched glass beads
- Incubate for 24 hrs
- Centrifuge
 - Supernatant divided in 3-5 ml syringes
 100 fold increase in IL-1 Ra

IRAP-Clinical Considerations

- >30,000 human / >5000 equine kits utilized
- Usually series of intrasynovial injections (3-5) at 7-14 day intervals
- Anecdotal reports of positive results in corticosteroid "unresponsive" joints
- Utilized as scheduled "maintenance" treatment for chronic diagnosed intrasynovial concerns
- Few inflammatory flares- filtering, incubation times
- Additives of corticosteroids, HA, PSGAG may diminish efficacy (Frisbee 2009)
- Use in other tissues?

Stem Cell Therapy

- Mesenchymal vs. embryonic cells
- Literature on efficacy of stem cells is expanding rapidly (Dahlgren 2005, Clegg 2008, Brehm 2008, Oliveira 2008, Fortier 2009)
- Some difficulty defining "stem cells"
- Specific tissue derived and isolatedadipose, muscle, bone, embryonic, blood
- Culture expanded- more "pure" aliquot of cells

Stem Cell Therapy

- Potential for "regeneration" of tissue- ideal
- Affinity to bind to injured tissue (Murphy 2003, Frisbee 2006)
- Recruitment of other cells and growth factors
- Utilized in tendons, ligaments, joints (Richardson2005, Smith 2004, Frisbee 2006)
- May not accelerate regenerative process but promising results in structure and function of repair (Oliveira 2008)
- Used in regional perfusion

Stem Cell Therapy – Questions?

- Best source of cells?
- "Slurry" or "purified" cells
- Clinical issues- how many cells?, when?, how often?, how delivered?, other additives?
- Undifferentiated or pre-differentiated cells best?
- Can we select stem cell populations?

Stem Cell Therapy

- Vet Stem
- Celavet
- VetCell BioScience, LTD
- Cornell / CSU / UCD
- Numerous other tissue culture labs

Clinical Use- BMA and PRP- Soft Tissue Lesions

Soft tissue lesions	SDFT	DCL	SL	BSL	DDFT	DSL	
#	5	4	5	7	5	3	

- Varied severity of lesions
- Varied location (within specific tissue)
- Varied rehabilitation protocols
- Varied sport horse activity
- Multiple additional treatments

BMA and PRP Results

- Results- Soft tissue
 - Return to show at same level- 12/22 (55%)
 - Reduced level of activity- 7/22 (32%)
 Not able to return to activity- 3/22 (13%)

 - Reinjured- 3/19 (16%)
 - Presently rehabbing 7

Clinical Use-BMA/PRP-Subchondral Bone Cysts

- Five sport horses
- Acutely clinical in mature horses Medial femoral condyle - (4) • Pastern - (1)

Clinical Use-BMA/PRP-Subchondral Bone Cysts

BMA/PRP- Subchondral bone cysts

- Clinical problem is cartilage disruption and cellular debris in joint
- Results- MFC
 - Back to show (1)
 - Reduced work (1)
 - Chronic lame (2)
- Pastern sound

Clinical Use IRAP

- Intraarticular 15 cases Fetlock- 8
 DIP- 5
 Stifle- 2
- High motion joints
- Unresponsive to previous treatment- rest, corticosteroids, HA*
- Series of 3-4 txs, 7-14 day interval
- Not used in tendon sheaths

Clinical Use IRAP- Results

- Fetlock- 6/8 (75%) returned to previous activity
- DIP- 4/5 (80%) returned to previous activity
- Stifle- 1/2 (50%) returned to previous activity
- Total- 11/15 (73%)
- Interpretation?*

Clinical Use- Stem Cells

- Fat derived- 4 cases
 - Joint– 2 (DIP, fetlock)
 <u>Soft tissue-</u> 2 (DSL,
 - Soft tissue- 2 (DS DDFT)
- Bone marrow origin-5 cases
 - Joint- 2 (fetlock)
 - Soft tissue- 3 (SDFT, SL)
- Embryonic derived-2 cases
 - Joint- 1 (tibial tarsal)
 - Soft tissue- 1 (SDFT)

Stem Cells- Results

- Fat derived-
 - DIP- reduced level
 Fetlock- retired • DSL, DDFT- previous
- level Bone marrow
- cultured-
- Fetlock- (1) retired, (1) in progress?
- SDFT- previous level*
- SL- previous level*
- Embryonic derived-
 - Hock– retired*
 - SDFT- previous level

Summary

- Number of regenerative therapy options
- Basic science concerning these therapies is Data schede concerning these therapies in needed- growth factors, gene expression, what is actually going on?
 Will continue to be a requested treatment modality by horse clients
- Does not shorten "healing" time; rehabilitation programs important
- Clinical studies are difficult to compare

